
 REDES MÓVEIS E SEM

FIOS
2019-2020, MEEC

1 | P á g i n a

LAB PROJECT Nº0

OMNET++/INET TUTORIAL

1 INTRODUCTION
This guide is intended to be followed by the students in order to give their first steps in

OMNET++/INET network simulation. It assumes the availability of an OMNET++ installation

where the INET Framework is included. Follow the described steps and ask the professor or lab

assistant if you have any questions.

OMNET++ uses three main kinds of files:

 Source files: C++ files (.h, .cc) and message definition files (.msg).

 Module definition files: Scrips written in NED language (.ned).

 Initialization files: Simulation definition files that parameterize the modules defined

with the NED language (.ini).

In this course, we are mostly concerned with the module and simulation definition files

(i.e., .ned and .ini files), although it will be sometimes useful to look at the source files (i.e., .h

and .cpp, as well as .ned files corresponding to these modules) in order to better understand

the module functionality.

OMNET++ is a generic discrete event simulator, suitable to model any system consisting of

modules that communicate by means of messages. However, in this course, we will focus on

communication network simulation. The INET framework is an OMNET++ add-on that

provides a comprehensive implementation of well-known communication technologies and

protocols: e.g., IEEE 802.11, the IP protocol stack, as well as mobile ad-hoc network (MANET)

routing protocols.

Note: This project is not intended for evaluation, neither does it require the students to

deliver a report. However, the more dedication the students pay understanding the tasks in

this lab, the less time they will spend with the other projects, namely LAB1.

 REDES MÓVEIS E SEM

FIOS
2019-2020, MEEC

2 | P á g i n a

2 A SMALL IEEE 802.11 INFRASTRUCTURE WLAN
This task is based on the hosttohost_LAB0 scenario, which models the communication

between one or more client hosts and a server host through an IEEE 802.11 access point. In

order to explore this scenario more efficiently, the students should follow the following steps.

1. Download the hosttohost_LAB0.zip file from the course’s webpage and expand it

below inet/examples/wireless/.

2. Within the OMNET++ IDE, expand the inet/examples/wireless/hosttohost_LAB0 folder.

You will be able to see the files SimpleWLAN.ned and omnetpp.ini. SimpleWLAN.ned

defines the node types and network configuration for this scenario, while omnetpp.ini

assigns specific values to node modules and network parameters defined in

SimpleWLAN.ned.

3. Double click on SimpleWLAN.ned to open it. You will be able to visualize the contents

of the .ned file graphically. Starting at the top, you can see the modules that compose

the ClientNode node type, followed by the ServerNode node type. Both comprise a

WLAN card, interface table and a mobility module, responsible for calculating the

node position as a function of time. The remaining module is the application, which is

the element that differs between the two node types. The ClientNode runs a client

application cli (of type EtherAppClient), while the ServerNode runs a server

application srv (of type EtherAppServer). As you may notice, in this scenario the

applications run directly on top of the WLAN card (physical and data link layers)

without an IP protocol stack. Below the ServerNode, you can see the network

definition, which was called SimpleWLAN. The network comprises a srvHost (a

ServerNode), one ap (an AccessPoint), the radioMedium (this is the entity responsible

for calculating radio propagation effects) and a vector of several cliHost nodes (these

are ClientNode instances). The number of cliHost nodes present in the scenario is

given by numCli, which is a parameter of the SimpleWLAN network module.

4. The way the module hierarchy is defined can be simply grasped if you switch to the

“Source” view of the .ned file. Below the initial package and import definitions, you

can see that the modules that you could see in the graphical view are correlated with

the textual contents of the .ned file. You can see that there is an implicit module

hierarchy, since the defined modules have sub-modules, which already appeared in

the graphical view. The modules and sub-modules have parameters. As you will see,

the values of these parameters (e.g., numCli) can be assigned or modified from the .ini

file. Some of these parameters are special and are called “properties”, e.g., @display

 REDES MÓVEIS E SEM

FIOS
2019-2020, MEEC

3 | P á g i n a

and @networkNode. The property @display controls the graphical representation of

the module, namely designating the graphical icon and/or its position. The property

@networkNode simply indicates that the module is a network node. The modules

also have gates through which can connect with other modules. The connections

between a module’s gates and those of its sub-modules, as well as between

submodules, are defined in the section connections in the module definition. Although

the SimpleWLAN network includes a sub-module ap of type AccessPoint, this module

type is not defined in SimpleWLAN.ned. This is because AccessPoint already makes

part of the INET implementation. In fact, you can access its .ned file at

inet/src/inet/nodes/wireless/AccessPoint.ned. You can also look at the application

types being run by the ClientNode and ServerNode, which are EtherAppCli and

EtherAppServer, respectively. The EtherAppCli simply sends request frames to a

destination MAC address, with a constant period, while the EtherAppServer

application receives the request frames and responds with the requested number of

bytes. Another interesting feature is the mobility module types. ClientNode nodes have

CircleMobility (nodes are deployed and move in a circle) while the ServerNode is

meant to remain static (StationaryMobility)

5. Go back to the graphical representation of SimpleWLAN.ned. You can double-click on

any sub-module in order to open it. In case a sub-module is itself a compound module

with sub-modules, when you open it, it will also display a hierarchical graphical view.

For example, the wlan sub-modules, which are of type IEEE80211Nic include the mac

and radio sub-modules, which implement the physical and MAC protocol layers,

respectively. Other modules have no sub-modules, being directly implemented in C++

(e.g., sink). These are called simple modules and are defined in a .ned file using

explicitly the keyword simple.

6. Open the omnetpp.ini file, which contains the parameter definition. The language

employed in .ini files makes extensive use of wildcards for sake of abbreviation. For

example, the constraintAreaMinX parameter belongs to the mobility module, although

that is not explicit in its assignment. This wildcard syntax is described in the

OMNET++ User Manual. If you read the .ini file, you will find interesting parameters,

such as radio and MAC parameters, as well as application parameters, namely the

destination address of the EtherAppCli application run by the cliHost nodes, which

should correspond to the srvHost’s MAC address.

7. The omnetpp.ini file describes two configurations, or scenario variants. The General

configuration forms the basis of the simulation and defines all parameters except

SimpleWLAN.numCli. The SimpleWLAN1 configuration fixes the latter with a value of

6, defining a scenario with 6 cliHost nodes.

8. While having the omnetpp.ini file open, run the simulation, selecting option Run/Run

from the main menu. After some processing, a dialog box with appear, asking you

 REDES MÓVEIS E SEM

FIOS
2019-2020, MEEC

4 | P á g i n a

which configuration to run. Select the General configuration. Another dialog box will

ask you the value of the numCli parameter. Whenever a parameter is not defined in

either the .ned or .ini files, the user is prompted to manually enter its value at the

beginning of the simulation. Enter the value 6. You will then see that, as expected, the

cliHost nodes are deployed in a circle around the access point, while srvHost is

statically deployed at the lower right corner. This setting is derived from the mobility

parameters and/or display properties defined in the .ned and .ini files. You can now

run the simulation and watch the message flow. In the simulator’s main window

(Tkenv) you can watch the scheduled events as well as the trace strings printed from

the C++ objects as the simulation runs. You have also the possibility to change the

simulation speed, or interrupt/resume the simulation, etc.

9. Run the simulation for 5 seconds, then stop it and select “Simulate/Conclude

Simulation” from the TKenv menu and/or terminate the Tkenv. You will now notice

that the simulation has generated some statistic files at

inet/examples/wireless/hosttohost_LAB0/results: General-0.sca, General-0.vec and

General-0.vci. The .sca file contains scalar statistic output variables, while the .vec file

contains vector trace variables. The .vci file is just an index to the .vec file.

10. Open the .sca or the .vec file in order to access the output statistics variables. An .anf

file will be created integrating all the statistics. You can now browse the statistics

variables, which are organized according to the module hierarchy.

11. Find the following statistics: average end-to-end delay and total number of octets

successfully received, both at the application layer. Challenge: calculate the

throughput in bit-per-second, based on the statistics variables that you find

appropriate.

12. At the MAC layer of cliHost nodes, check the average number of packets sent/received

to/from the higher layer, and number of packets sent/received to/from the lower

layer.

13. Do the same at the access point. Check how many packets were incorrectly received.

Explain.

14. Check the average signal-to-noise-plus-interference ratio at srvHost’s radio.

 REDES MÓVEIS E SEM

FIOS
2019-2020, MEEC

5 | P á g i n a

3 AN IEEE 802.11 INFRASTRUCTURE WLAN WITH IP STACK
This task is based on the inet/examples/wireless/wiredandwirelesshostswithap scenario.

1. Copy the inet/examples/wireless/wiredandwirelesshostswithap scenario to

inet/examples/wireless/wiredandwirelesshostswithap_LAB0.

2. Perform the necessary changes to the script files, so that the IDE does not complain

about errors in the new scenario folder.

3. Within the OMNET++ IDE, expand the

inet/examples/wireless/wiredandwirelesshostswithap_LAB0 folder. Open the

WiredAndWirelessHostsWithAP.ned file.

4. Check the types and contents of wirelessHost1, wiredHost1 and wiredHost2. The

protocol layers are conveniently separated. What is the relationship between

WirelessHost and StandardHost? What are the differences?

5. Run the scenario. Open the wireless host by clicking on its icon. As you can see, the

layers of the protocol stack are conveniently identified. What are the supported

network layer and transport layer protocols? What kinds of applications are

supported?

6. Change the scenario so that the number of wireless nodes is variable and is deployed

in a circle around the AP, at a distance of 100 m, moving around the circle at a speed

of 5 m/s. Tips: (1) you had already seen such a behavior in the hosttohost_LAB0

scenario; (2) In WirelessHost, the mobility module is abstract and its type is

defined in parameter **.wirelessHost1.mobility.typename.

7. Set the WLAN bitrate to 5.5 Mbit/s and a transmit power of 18 dBm.

8. Simulate the scenario during 5 seconds of simulation time.

9. Check the average signal-to-noise-plus-interference ratio at the ap.

10. Finish the simulation. Increase the transmit power to 22 dBm.

11. Simulate the scenario during 5 seconds of simulation time.

 REDES MÓVEIS E SEM

FIOS
2019-2020, MEEC

6 | P á g i n a

12. Check the average signal-to-noise-plus-interference ratio at the ap.

13. Finish the simulation. Change the mobility model to Random Waypoint mobility,

setting the speed at 2 m/s and wait time of 1 s. Note: this mobility model requires

that all minimum and maximum X, Y and Z constraints be initialized, otherwise

it crashes.

14. Simulate the scenario again during 5s and compare the results.

